Composite Materials For Demanding Bearing And Wear Applications
The Advantages Of Composite Materials.

Composite materials are designed and produced to suit specific properties:
- Low friction and wear
- Structural strength
- Electrical insulation
- Chemical resistance
- Resistance to arcing and combustion
- Anti-galling

Unparalleled functionality
Norplex-Micarta produces a full line of high-performance composites for heavy equipment and agriculture, hydroelectric and power generation, ship building and marine, and other energy and processing industries, including materials specifically designed for bearing and wear applications.

Engineering materials for demanding environments
Starting with tough, chemically resistant, and proven resin systems, Norplex-Micarta’s materials are specifically engineered to the requirements of a particular application. The ability to combine multiple materials allows for a wide range of performance demands to be met economically. Heat can be removed by adding metal wire, PTFE surface layers can promote improved break-in, aramid fibers can provide both excellent strength and low wear, and reinforcements can be chosen to minimize moisture absorption.

New to the Norplex-Micarta portfolio of bearing and wear materials are hybrid fabrics. These materials allow for optimized performance and value in the individual layers of the composite. Produced in sheets or tubes, these materials can be combined with traditional composite materials to further expand design and performance options.

Self-lubricated, fully bearing, shock resistant, electrically insulating, and easily fabricated Norplex-Micarta’s composite bearing and wear materials have many benefits:
- The materials are inherently strong and do not require a metal backer
- Lubricants can be added to the resin system to allow for even dispersion and dry running
- The materials have the ability to withstand shock and side loads and tolerate misalignment
- Grades without graphite lubrication are electrically insulating which helps to minimize galvanic corrosion

All of these benefits in the application come from a material that is easily fabricated with standard machine tools, often at speeds faster than metal alternatives.
Designed For Performance In Specific Applications

Specialty composites are ready for the most challenging assignments.
Each individual thermoset composite from Norplex-Micarta is designed to solve a specific set of challenges. Composites can be engineered to provide structural reliability under a wide variety of conditions. They protect product, facility and equipment by minimizing heat transfer, vibration, thermal expansion, abrasion and corrosion.

Norplex-Micarta thermoset composites are made by combining a resin matrix with a reinforcing substrate. Each combination is chosen for its ability to deliver controlled and repeatable performance to match the application’s requirements. After the matrix and substrate are combined, a high-temperature curing operation creates a cross-linked molecular structure, which produces a material that does not melt. Pioneered by Norplex-Micarta, this process distinguishes our composites. Unique processing techniques can be used to combine any of several resins with a multitude of reinforcements to produce materials with innate properties that are superior to those of its individual components.

New solutions are always in development.
Because industry demand for increasingly specialized materials continues to grow, significant development of new Norplex-Micarta composites is continually underway, providing custom solutions for customers with specific needs.

Customer driven solutions
We work directly with customers to solve complex problems. Our application engineers design unique materials and provide testing services to support the development of application-specific solutions.
A History Of Leadership And Innovation Behind Today’s Thermoset Composite Materials

Through each step in our evolution, we have led the development of new and advanced materials for industry and consumer goods. Norplex-Micarta consistently develops and supplies quality materials to OEMs and fabricators around the world for some of the most demanding applications.

1900: Using Leo Baekeland’s phenolic resin, George Westinghouse invents Micarta for electrical insulation.

1909: Using Leo Baekeland’s phenolic resin, George Westinghouse invents Micarta for electrical insulation.

1910: The Micarta division of Westinghouse Electric is relocated to South Carolina USA to produce sheets, rolled tubes, molded shapes and other specialty materials.

1920: The largest generators at Hoover Dam produce 130 megawatts. Micarta provides electrical insulation and structural stability.

1930: Composite plastics are used in great novelties and structural stability in electronic assemblies and small motors.

1936: The largest generators at Hoover Dam produce 130 megawatts. Micarta provides electrical insulation and structural stability.

1940: The Micarta division of Westinghouse Electric is relocated to South Carolina USA to produce sheets, rolled tubes, molded shapes and other specialty materials.

1945: The Northern Plastics Corp. that becomes Norplex is formed in Wisconsin USA.

1950: The Northern Plastics division of Norplex is acquired by Universal Oil Products Company, later called UOP.

1955: The Micarta division of Westinghouse Electric is relocated to South Carolina USA to produce sheets, rolled tubes, molded shapes and other specialty materials.

1960: Composite plastics are used in great novelties and structural stability in electronic assemblies and small motors.

1965: Composite plastics are used in great novelties and structural stability in electronic assemblies and small motors.

1965–75: Northern Plastics becomes Norplex and is acquired by Universal Oil Products Company, later called UOP.

1970: The Micarta division of Westinghouse Electric is relocated to South Carolina USA to produce sheets, rolled tubes, molded shapes and other specialty materials.

1980: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

1990: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

1990s: An era of medical breakthroughs: Non-conductive, light, non-magnetic, sterilization-ready components offer quiet operation and low attenuation.

2000: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

2008: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

2010: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

2013: Norplex-Micarta opens plant in China.

2015: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

2016: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

This era brings power generation, electronics, heavy industry manufacturing, automotive and aerospace innovations.

1909: Using Leo Baekeland’s phenolic resin, George Westinghouse invents Micarta for electrical insulation.

1955: The Micarta division of Westinghouse Electric is relocated to South Carolina USA to produce sheets, rolled tubes, molded shapes and other specialty materials.

1960: Composite plastics are used in great novelties and structural stability in electronic assemblies and small motors.

1965: Composite plastics are used in great novelties and structural stability in electronic assemblies and small motors.

1970: The Micarta division of Westinghouse Electric is relocated to South Carolina USA to produce sheets, rolled tubes, molded shapes and other specialty materials.

1980: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

1990: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

1990s: An era of medical breakthroughs: Non-conductive, light, non-magnetic, sterilization-ready components offer quiet operation and low attenuation.

2000: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

2008: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

2010: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

2013: Norplex-Micarta opens plant in China.

2015: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

2016: Delicate sensors released into the eyes of hurricanes are protected by a rugged Norplex-Micarta casing.

Norplex-Micarta continues to develop specialized thermoset materials for the next generation of applications.

Meet Norplex-Micarta

Aerospace

Critical ballistic protection

Heavy Industrial

Tough, versatile, easy to machine

Military

Power Generation

Reliability and performance

Transportation

Durable solutions on the move

Medical Equipment

Supporting innovation

Aerospace

Proven in deep space

Military

Critical ballistic protection

Heavy Industrial

Tough, versatile, easy to machine

Oil & Gas

Designed for extreme environments

Electrical Devices

Precise properties for advanced tech

Power Generation

Reliability and performance

Transportation

Durable solutions on the move

Medical Equipment

Supporting innovation

Aerospace

Proven in deep space

Military

Critical ballistic protection

Heavy Industrial

Tough, versatile, easy to machine

Meet Norplex-Micarta
Analysis, Design, Engineering And Manufacturing

Standard products available
While composites offer an infinite array of possible material options, Norplex-Micarta has developed a suite of standard products specific for bearing and wear applications. These off the shelf materials, a few of which are highlighted on the next page, allow for rapid testing and analysis in new applications to inform a structured material design process.

Structured approach to design and engineering
Working with customers, Norplex-Micarta develops solutions to the unique challenges of specific applications. Applications engineers support customers to develop a set of design criteria for a new material. Utilizing test capabilities from internal and external laboratories, Norplex-Micarta product and process engineers then work to ensure that the customized material is stable, repeatable, and scalable from the raw materials through to delivery to the customer.

Manufacturing excellence
This work is primarily performed at the North American design and production facility in Postville, Iowa. This location is able to process a wide variety of resin and reinforcements into pre-preg, sheet, tube, and other shapes in an ISO 9001 certified facility. Customers in Asia can access these resources through our production facility and dedicated customer support teams in China.

Innovative Thinking Backed By Optimized Production
Our engineers design for nearly any condition, in, on, or above the earth.

A structured design approach, backed by stringent testing and unique processing methods, allow for a predictable material that is also repeatable and economical at scale production.

All of this is built from decades of experience in product development and production of thermoset composites.
Norplex-Micarta offers a wide range of material options for bearing and wear applications. To make selection and evaluation of these options easier to understand, we have developed a naming convention detailed below.

Additionally, color options, surface modifications, and additional processing steps such as oil stabilization or sanding are possible. Norplex-Micarta’s sales and applications engineering staff look forward to discussing your specific requirements. As a first step in the evaluation process, to the right are a few grades that are used in bearing and wear applications. These materials are available for baseline testing to inform a product analysis and design process for your specific application.

Grade Description Example

<table>
<thead>
<tr>
<th>Form Code</th>
<th>Designator</th>
<th>Reinforcement Code</th>
<th>Additive Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP31NP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP33NP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Forms: Materials can be supplied as (BB) pre-preg, (BP) sheet, (BT) tube, and (BR) rod

Reinforcements:
- 10 – 19: Cotton
- 20 – 29: Linen
- 30 – 49: synthetic fibers such as polyester, PTFE, aramids and blends of synthetic fibers
- 60 – 69: paper reinforcements
- 70 – 99: combinations of reinforcements

Designator: Left reserved to differentiate constructions

Reinforcement: Most bearing and wear materials are made with (P) Phenolic resin. Other chemistries are available.

Additives: Resin systems can be modified with additives to enhance performance. Additives include (A) Alumina, (G) Graphite, (M) Molly, and (P) PTFE.

Thus, BP11NP is a sheet product produced from a medium weight canvas with no additives with a phenolic resin system.

Featured Norplex-Micarta Composites For Bearing And Wear Applications

Grade BP11NP:
A mid-weight canvas phenolic sheet material

<table>
<thead>
<tr>
<th>General Physical Properties</th>
<th>Test Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural Strength</td>
<td>ASTM D790</td>
<td>18,000 / 17,000 psi</td>
</tr>
<tr>
<td>Flexural Modulus</td>
<td>ASTM D790</td>
<td>1,600 / 1,500 kpsi</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D638</td>
<td>15,000 / 9,700 psi</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM D695</td>
<td>34,000 psi</td>
</tr>
<tr>
<td>Coefficient of Friction</td>
<td>ASTM D4521</td>
<td>0.190</td>
</tr>
</tbody>
</table>

Grade BP18NP:
A heavy weight canvas phenolic sheet material with moly

<table>
<thead>
<tr>
<th>General Physical Properties</th>
<th>Test Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural Strength</td>
<td>ASTM D790</td>
<td>16,200 / 12,700 psi</td>
</tr>
<tr>
<td>Flexural Modulus</td>
<td>ASTM D790</td>
<td>937 / 818 kpsi</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D638</td>
<td>10,200 / 6,300 psi</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM D695</td>
<td>34,000 psi</td>
</tr>
<tr>
<td>Coefficient of Friction</td>
<td>ASTM D4521</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Grade BP11NP:
A mid-weight canvas phenolic sheet material with graphite

<table>
<thead>
<tr>
<th>General Physical Properties</th>
<th>Test Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural Strength</td>
<td>ASTM D790</td>
<td>19,000 / 15,000 psi</td>
</tr>
<tr>
<td>Flexural Modulus</td>
<td>ASTM D790</td>
<td>1,200 / 1,000 kpsi</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D638</td>
<td>10,000 / 7,000 psi</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM D695</td>
<td>38,000 psi</td>
</tr>
<tr>
<td>Coefficient of Friction</td>
<td>ASTM D4521</td>
<td>0.092</td>
</tr>
</tbody>
</table>

Grade BP33NP:
A polyester/PTFE hybrid fabric phenolic sheet material

<table>
<thead>
<tr>
<th>General Physical Properties</th>
<th>Test Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural Strength</td>
<td>ASTM D790</td>
<td>21,000 / 6,700 psi</td>
</tr>
<tr>
<td>Flexural Modulus</td>
<td>ASTM D790</td>
<td>657 / 24 kpsi</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D638</td>
<td>13,900 / 4,200 psi</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM D695</td>
<td>24,700 psi</td>
</tr>
<tr>
<td>Coefficient of Friction</td>
<td>ASTM D4521</td>
<td>0.139</td>
</tr>
</tbody>
</table>

Grade BT25NP:
A bleached linen phenolic tube material

<table>
<thead>
<tr>
<th>General Physical Properties</th>
<th>Test Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture Absorption</td>
<td>ASTM D570</td>
<td>2.0%</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D638</td>
<td>10,000 psi</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM D695</td>
<td>30,000 psi</td>
</tr>
<tr>
<td>Compressive Modulus</td>
<td>ASTM D695</td>
<td>380 kpsi</td>
</tr>
</tbody>
</table>

Grade BT22ZP:
A high density ultra-fine weave linen phenolic tube material

<table>
<thead>
<tr>
<th>General Physical Properties</th>
<th>Test Method</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture Absorption</td>
<td>ASTM D570</td>
<td>1.40%</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D638</td>
<td>11,000 psi</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM D695</td>
<td>33,000 psi</td>
</tr>
<tr>
<td>Compressive Modulus</td>
<td>ASTM D695</td>
<td>400 kpsi</td>
</tr>
</tbody>
</table>

Additionally, color options, surface modifications, and additional processing steps such as oil stabilization or sanding are possible. Norplex-Micarta’s sales and applications engineering staff look forward to discussing your specific requirements. As a first step in the evaluation process, to the right are a few grades that are used in bearing and wear applications. These materials are available for baseline testing to inform a product analysis and design process for your specific application.

Features

- **BP11NP:**
 - A mid-weight canvas phenolic sheet material
 - Flexural Strength: 18,000 / 17,000 psi
 - Flexural Modulus: 1,600 / 1,500 kpsi
 - Tensile Strength: 15,000 / 9,700 psi
 - Compressive Strength: 34,000 psi
 - Coefficient of Friction: 0.190

- **BP18NP:**
 - A heavy weight canvas phenolic sheet material with moly
 - Flexural Strength: 16,200 / 12,700 psi
 - Flexural Modulus: 937 / 818 kpsi
 - Tensile Strength: 10,200 / 6,300 psi
 - Compressive Strength: 34,000 psi
 - Coefficient of Friction: 0.20

- **BP11NP:**
 - A mid-weight canvas phenolic sheet material with graphite
 - Flexural Strength: 19,000 / 15,000 psi
 - Flexural Modulus: 1,200 / 1,000 kpsi
 - Tensile Strength: 10,000 / 7,000 psi
 - Compressive Strength: 38,000 psi
 - Coefficient of Friction: 0.092

- **BP33NP:**
 - A polyester/PTFE hybrid fabric phenolic sheet material
 - Flexural Strength: 21,000 / 6,700 psi
 - Flexural Modulus: 657 / 24 kpsi
 - Tensile Strength: 13,900 / 4,200 psi
 - Compressive Strength: 24,700 psi
 - Coefficient of Friction: 0.139

- **BT25NP:**
 - A bleached linen phenolic tube material
 - Moisture Absorption: 2.0%
 - Tensile Strength: 10,000 psi
 - Compressive Strength: 30,000 psi
 - Compressive Modulus: 380 kpsi

- **BT22ZP:**
 - A high density ultra-fine weave linen phenolic tube material
 - Moisture Absorption: 1.40%
 - Tensile Strength: 11,000 psi
 - Compressive Strength: 33,000 psi
 - Compressive Modulus: 400 kpsi

Notes

- The grades presented above are not a complete product offering. Please contact Norplex-Micarta sales or applications engineering to discuss your specific requirements.

- This data, while believed to be accurate and based on reliable analytical methods, is for informational purposes only. The terms and conditions of the agreement under which it is sold will govern any sales of this product. Data supplied above are "typical values," not to be considered "specification values."

- To assure the material’s performance is adequate for a specific application, customers should verify, independent of Norplex-Micarta, performance characteristics of interest.

- It is the responsibility of the users of this information to make sure that they have the latest version of the Technical Data Bulletin, and are urged to check our website, www.norplex-micarta.com, to determine if information is most current.

- Specification writers: Contact Norplex-Micarta for specification values before submission.
Norplex-Micarta – North America and Europe

Global Headquarters and Design Center
665 Lybrand Street
Postville, Iowa, USA 52162-0977
Phone: 800 350 9490
info@norplex-micarta.com
www.norplex-micarta.com

Norplex-Micarta – China and Asia Pacific

For mainland China inquiries:
Changzhou Micarta Composite Material Company
2 Xingtang Road, Hi-Tech Development Zone
Changzhou, 213127, P.R. China
Phone: +86 (0) 755 2988 1383 / 2910 6053
info@norplex-micarta.asia
www.norplex-micarta.asia

For inquiries outside of mainland China:
Micarta Composite Materials (Shanghai) Trading Company, Ltd.
Shenzhen Office
Room L, 11F, JinDaCheng Bldg, Zhongxinn Road, Shajing, Baoan District,
Shenzhen 518104, P.R. China
Phone: +86 (0) 755 2988 1383
Fax: +86 (0) 755 2722 9550
sales@norplex-micarta.asia